Математика
1121вопрос
Другое
687вопросов
Русский язык
346вопросов
Литература
175вопросов
Черчение
93вопроса
Информатика
75вопросов
Химия
72вопроса
Физика
67вопросов
Биология
62вопроса
История
62вопроса
Английский язык
60вопросов
Экономика
58вопросов
Другие предметы
57вопросов
География
55вопросов
Социология
50вопросов
Физкультура
47вопросов
Украинский язык
47вопросов
Музыка
47вопросов
Обществознание
46вопросов
Окружающий мир
45вопросов
Право
42вопроса
Психология
42вопроса
Теория вероятностей
41вопрос
Немецкий язык
40вопросов
Физкультура и спорт
38вопросов
Астрономия
33вопроса
Философия
30вопросов
ОБЖ
29вопросов
Казахский язык
28вопросов
Статистика
0вопросов
Экология
0вопросов
Естествознание
0вопросов
Украинская литература
0вопросов
МХК
0вопросов
Белорусский язык
0вопросов
Существуют два основных способа решения систем уравнений
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7
3x − 2y = 4
Выразим из первого уравнения «x + 5y = 7» неизвестное «x».
Важно!
Галка
Чтобы выразить неизвестное, нужно выполнить два условия:
перенести неизвестное, которое хотим выразить, в левую часть уравнения;
разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.
Перенесём в первом уравнении «x + 5 y = 7» всё что содержит «x» в левую часть, а остальное в правую часть по правилу переносу.
При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y
3x − 2y = 4
Теперь, вместо «x» подставим во второе уравнение полученное выражение
«x = 7 − 5y» из первого уравнения.
x = 7 − 5y
3(7 − 5y) − 2y = 4
Подставив вместо «x» выражение «(7 − 5y)» во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным «y». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение «3(7 − 5y) − 2y = 4» отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*).
x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)
(*) 3(7 − 5y) − 2y = 4
21 − 15y − 2y = 4
− 17y = 4 − 21
− 17y = − 17 | :(−17)
y = 1
Мы нашли, что «y = 1». Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение. Таким образом можно найти «x». Запишем в ответ оба полученных значения.
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7
3x − 2y = 4
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
Запомните!
!
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7 (x + 5y) + (3x − 2y) = 7 + 4
+ => x + 5y + 3x − 2y = 11
3x − 2y = 4 4x + 3y = 11
При сложении уравнений мы получили уравнение «4x + 3y = 11». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7
3x − 2y = 4
Чтобы при сложении неизвестное «x» взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при «x» стоял коэффициент «−3».
Для этого умножим первое уравнение на «−3».
Важно!
Галка
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3)
3x − 2y = 4
x ·(−3) + 5y · (−3) = 7 · (−3)
3x − 2y = 4
−3x −15y = −21
3x − 2y = 4
Теперь сложим уравнения.
−3x −15y = −21 (−3x −15y ) + (3x − 2y) = −21 + 4
+ => −3x −15y + 3x − 2y = −21 + 4
3x − 2y = 4 −17y = −17 |:(−17)
y = 1
Мы нашли «y = 1». Вернемся к первому уравнению и подставим вместо «y» полученное числовое значение и найдем «x».
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
Ответ: x = 2; y =1